The tools in the NBTC labs have been selected to be of the greatest use to the majority of researchers doing interdisciplinary research in nanobiotechnology and related fields. NBTC staff can train and give experimental advice to any user with an interest in using this equipment.

Materials Characterization

- **EP3 Imaging Ellipsometer**
 - Performs nondestructive thickness measurements of protein, metal, polymer, or ceramic films.
 - Sub-Å resolution
 - 2µm lateral resolution
 - Mapping and kinetics capabilities
 - Liquid cell for in situ biological adsorption measurements

- **Zetasizer Nano-ZS**
 - Dynamic light scattering instrument for measuring the size, size distribution, molecular weight, or zeta potential of nanoparticles, proteins, and polymers.
 - Measurement range: 0.6-6000 nm.
 - Wide functional concentration range

- **Bruker Vertex 80v FT-IR**
 - Aids in chemical analysis of bulk samples, polymers, or biofilms.
 - Vacuum evacuated optics and sample compartment minimize atmospheric water and carbon dioxide peaks, giving greater sensitivity to biologically relevant regions of the IR spectrum.

- **Dektak 6M Profilometer**
 - Measures heights of troughs or bumps in polymer, metal, silicon, etc.
 - Measures step heights anywhere from 10nm to 1mm with Å resolution
 - Can perform traces from 50µm to 30mm

- **Gamry Potentiostat**
 - Microelectrode experiments, electrochemical measurements of organic/biological coatings.
 - Readily configurable to user’s needs: can be used in conjunction with AFM or microscopy facilities for more detailed characterization of microstructures

- **SV10 Vibro Viscometer**
 - Measures the viscosity of liquids in ~15 seconds.
 - Viscosity range: 0.3-10,000 centipoise
 - Minimum sample volume: 10mL or 35mL
 - Accuracy: 1% over the whole measurement range

- **Electronics testing**
 - The NBTC has a variety of electronics testing equipment including voltmeters, ammeters, conductivity meter, multimeters, LCR meter, oscilloscopes, power supplies, source meter, function generators/amplifiers.

NBTC website: http://nbtc.cornell.edu
Biological Preparation and Characterization

BioPlex 200
High Throughput Fluidics suspension array system for analyzing concentration of protein and nucleic acid moieties.
- Fluorescent bead system enables analysis of up to 100 biomolecules in a single sample. 2µm lateral resolution
- Automated reading of 96 well plates in about 35 minutes

FlashGel Electrophoresis
System for separating, recovering, and analyzing proteins and DNA.
- See bands in as little as 2 minutes
- 5 - 20 times more sensitive than ethidium bromide; detect <0.1ng DNA or <10ng total RNA
- Built-in transilluminator provides both separation and detection

Mammalian Cell Culture
Complete work station for growing mammalian cells.
- Includes: cell culture hood, incubator with CO₂ control, liquid nitrogen storage tank
- Automated Cell Counter, phase contrast microscope, and staff expertise on cell culture, fixation, and staining

Bacterial Cell Culture
Complete work station for growing bacterial cells.
- Equipment includes: cell culture hood for maintaining sterility, rocker water bath, incubator with CO₂ control and orbital shakers, liquid nitrogen storage tank

Fluoroskan
High sensitivity fluorescence plate reader for analyzing fluorescent solutions.
- Minimum volume 100µL
- Excitation: 355, 485, 550nm
- Emission: 460, 510, 584nm

Turner Fluorometer
Provides analytical quantitative fluorescence measurements in cuvettes.
- Sensitivity: 25 pg/ml dsDNA in 2ml assay volume
- Currently available filter pairs:
 - NB 360 - SC 415, SC 515
 - NB 490 - SC 585
 - NB 590 - SC 605

Spectrophotometer
For measuring the absorbance of colored solutions.
- Full spectral range: 190 - 1000nm, tunable in 1nm increments with 2nm bandwidth
- Temperature range: 4 - 45°C

PCR Thermocycler
Thermal Cycler for PCR reactions.
- Hot bonnet configuration
- 96 wells for 0.2ml PCR tubes
- Temperature gradient capability

NBTC website: http://nbtc.cornell.edu
Imaging Capabilities

Nikon TIRF microscope
Total Internal Reflection Fluorescence (TIRF) microscopy is a method for imaging fluorophores located very close to the coverslip, with sufficient sensitivity for single-fluorophore experiments.
- Adaptable to FRET, FRAP, and PALM experiments
- Combine PicoPlus fluid atomic force microscope (AFM) with TIRF or epifluorescence

Fluorescence Microscopes
BX51 (upright) and IX71 (inverted) Olympus microscopes can take brightfield or fluorescence images.
- Image Pro software can perform image processing or analysis

Rame Hart 500 Goniometer
Measures contact angle or determines the surface energy of a liquid or surface.
- Features: Automated dispensing system and droplet analysis, environmental chamber for heating or cooling

PicoPlus AFM
Atomic Force Microscopy (AFM) is a technique for imaging topography or chemical patterns. The PicoPlus AFM can perform this imaging in air, fluid, or controlled atmosphere.
- High-resolution scanner (10µm scan range) for molecular scale imaging
- 100µm scanner with closed loop
- z positioning for accurate height and force measurements over large scan ranges
- Can be used in conjunction with Nikon TIRF fluorescent microscope for simultaneous force and fluorescent imaging

NBTC website http://nbtc.cornell.edu
Materials Synthesis and Preparation

PDMS Processing
PDMS processing tools:
• 60°C oven
• Vacuum chamber
• Programmable spinner
• UV crosslinker oven
• Plasma cleaner
• Technical assistance

Glove Box
Nitrogen-purged atmosphere enables synthesis of oxygen and water-sensitive materials

Parylene Coating
Parylene evaporation creates a pinhole-free, continuous, conformal, biologically inert polymer coating for devices

Chemical Lab
Chemistry tools available in the NBTC facility include microbalance scales, fume hoods, glassware and disposable items, many standard chemicals, and access to NBTC staff expertise

Minicourses

Interdisciplinary research often requires new skills. Minicourses are intensive, hands-on classes that allow researchers to develop practical lab skills in new fields over several days. Instruction takes place in groups of 6 or less to ensure individual attention.

Cell Culture
• Safe and sterile material handling.
• Thawing, feeding, and passaging cell lines.
• Identifying contaminants
• Antibody and non-antibody cell staining.
• Live cell stains
• Fluorescence imaging

Microfluidics
• Cleanroom lab techniques
• Microfabrication protocols
• Fabrication of microfluidic masters.
• Device setup, packaging, and imaging

NBTC website http://nbtc.cornell.edu